Ozone Concentration Profiles in the Los Angeles Basin—A Possible Similarity in the Build-up Mechanism of Inland Surface Ozone in Israel

1996 ◽  
Vol 35 (7) ◽  
pp. 1085-1090 ◽  
Author(s):  
Uri Dayan ◽  
Jean Koch
2020 ◽  
Author(s):  
Fernando Chouza ◽  
Thierry Leblanc ◽  
Mark Brewer ◽  
Patrick Wang ◽  
Sabino Piazzolla ◽  
...  

Abstract. In this work, the impact of Los Angeles basin pollution transport and stratospheric intrusions on the surface ozone levels observed in the San Gabriel Mountains is investigated based on a combination of surface and lidar measurements as well as WRF-Chem (Weather Research and Forecasting with Chemistry) and WACCM (Whole Atmosphere Community Climate Model) model runs. The number of days with observed surface ozone levels exceeding the National Ambient Air Quality Standards exhibit a clear seasonal pattern, with a maximum during summer, when models suggest a minimum influence of stratospheric intrusions and the largest impact from Los Angeles basin pollution transport. Additionally, measured and modeled surface ozone and PM10 were analyzed as a function of season, time of the day and wind direction. Measurements and models are in good qualitative agreement, with maximum surface ozone observed for south-west and west winds. For the prevailing summer wind direction, slightly south of the ozone maximum and corresponding to south south-west winds, lower ozone levels were observed. Back-trajectories suggest that this is associated with transport from the central Los Angeles basin, where titration limits the amount of surface ozone. A quantitative comparison of the lidar profiles with WRF-Chem and WACCM models revealed good agreement near the surface, with models showing an increasing positive bias as function of altitude, reaching 75 % at 15 km above sea level. Finally, three selected case studies covering the different mechanisms affecting the near-surface ozone concentration over the San Gabriel mountains, namely stratospheric intrusions and pollution transport, are analyzed based on surface and ozone lidar measurements, as well as co-located ceilometer measurements and models.


2021 ◽  
Vol 21 (8) ◽  
pp. 6129-6153
Author(s):  
Fernando Chouza ◽  
Thierry Leblanc ◽  
Mark Brewer ◽  
Patrick Wang ◽  
Sabino Piazzolla ◽  
...  

Abstract. In this work, the impact of Los Angeles Basin pollution transport and stratospheric intrusions on the surface ozone levels observed in the San Gabriel Mountains is investigated based on a combination of surface and lidar measurements as well as WRF-Chem (Weather Research and Forecasting with Chemistry) and WACCM (Whole Atmosphere Community Climate Model) runs. The number of days with observed surface ozone levels exceeding the National Ambient Air Quality Standards exhibit a clear seasonal pattern, with a maximum during summer, when models suggest a minimum influence of stratospheric intrusions and the largest impact from Los Angeles Basin pollution transport. Additionally, measured and modeled surface ozone and PM10 were analyzed as a function of season, time of the day, and wind direction. Measurements and models are in good qualitative agreement, with maximum surface ozone observed for southwest and west winds. For the prevailing summer wind direction, slightly south of the ozone maximum and corresponding to south-southwest winds, lower ozone levels were observed. Back trajectories suggest that this is associated with transport from the central Los Angeles Basin, where titration limits the amount of surface ozone. A quantitative comparison of the lidar profiles with WRF-Chem and WACCM models revealed good agreement near the surface, with models showing an increasing positive bias as function of altitude, reaching 75 % at 15 km above sea level. Finally, three selected case studies covering the different mechanisms affecting the near-surface ozone concentration over the San Gabriel Mountains, namely stratospheric intrusions and pollution transport, are analyzed based on surface and ozone lidar measurements, as well as co-located ceilometer measurements and models.


2020 ◽  
Author(s):  
Cesunica Ivey ◽  
Ziqi Gao ◽  
Khanh Do ◽  
Arash Kashfi Yeganeh ◽  
Armistead Russell ◽  
...  

In March and April 2020, the South Coast Air Basin of California (USA) experienced noticeable declines in on-road activity and primary traffic-related pollutant emissions. However, secondary ozone concentration trends were not consistent across the basin. This research letter explores the impact of meteorology and emissions during this time period. The study elucidates the potential impacts on ozone nonattainment status for the region.


2020 ◽  
Author(s):  
Cesunica Ivey ◽  
Ziqi Gao ◽  
Khanh Do ◽  
Arash Kashfi Yeganeh ◽  
Armistead Russell ◽  
...  

In March and April 2020, the South Coast Air Basin of California (USA) experienced noticeable declines in on-road activity and primary traffic-related pollutant emissions. However, secondary ozone concentration trends were not consistent across the basin. This research letter explores the impact of meteorology and emissions during this time period. The study elucidates the potential impacts on ozone nonattainment status for the region.


2015 ◽  
Vol 315 (5) ◽  
pp. 412-459 ◽  
Author(s):  
B. Jung ◽  
G. Garven ◽  
J. R. Boles

Sign in / Sign up

Export Citation Format

Share Document